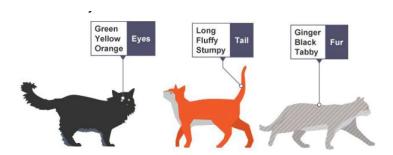
CS6102 - Computational Thinking

Week -8

11 - Feb-2022

Pattern Recognition and Abstraction, Nonograms


Pattern Recognition:

"Pattern recognition is about spotting if any steps in a solution can be repeated. It can also help to think about whether we have solved similar problems before".

Example:

Consider drawing three cats. Cat has common features like 4 legs, a body, head and a tail, 2 ears, eyes, mouth, fur. To solve this problem we could use what we know;

- by recognising this pattern for all cats we can draw the first cat and then draw two more that look similar.
- The only bits that will change in the drawings will be the specific details -
 - They could have different colour eyes
 - They could have different colour or style of fur
 - They could have different types of tails
 - They could be different sizes

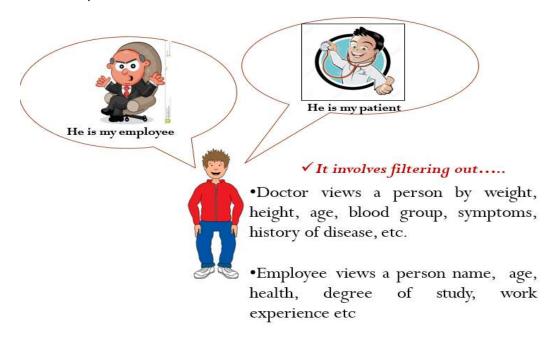
Why Pattern Recognition?

- Patterns make our task simpler.
- Problems are easier to solve when they share patterns, because we can use the same problem-solving solution wherever the pattern exists.
- The more patterns we can find, the easier and quicker our overall task of problem solving will be.

Qn1. Decompose the given tasks into smaller tasks.

Note: Use a bullet point for each smaller steps.

- a) Making a family meal
- b) Decorating your room


From the decomposed smaller tasks, identify the patterns/similarities

Qn 2. Identify 5 common features and different features for drawing three bicycles.

Abstraction:

Abstraction is one of the four cornerstones of Computer Science.

- Once patterns are recognised, abstraction is used to gather the general characteristics and to filter out
 of the details we do not need in order to solve our problem.
- It involves filtering out essentially, ignoring the characteristics that we don't need in order to concentrate on those that we do.
- It filters the specific details.

Example:

- Consider the activity of drawing a series of cats.
- We noted that all cats have general characteristics, which are common to all cats, eg eyes, a tail, fur, a liking for fish and the ability to make meowing sounds.
- In addition, each cat has specific characteristics, such as black fur, a long tail, green eyes, a love of salmon, and a loud meow.
- These details are known as specifics.
- We don't need to know what sound a cat makes or that it likes fish. These characteristics are irrelevant
 and can be filtered out.
- We do need to know that a cat has a tail, fur and eyes, but we don't need to know what size and colour
- Abstraction is gathering of general characteristics we need and filtering out of details and characteristics that we do not need.

Qn 3: Decompose the steps involved for baking a cake. Identify the common patterns. Also list down the general and specific details pertaining to it.

Nonograms

Nonograms is a logic puzzle with simple rules and challenging solutions.

The rules are

- ✓ You have a grid of squares, which must be either filled in black or marked with X.
- \checkmark Beside each row of the grid are listed the lengths of the runs of black squares on that row.
- \checkmark Above each column are listed the lengths of the runs of black squares in that column.
- ✓ Your aim is to find all black squares. Qn 4:

	2	1		3		2		1	1	1
	2	1	1	2	9	4	5	5	5	5
1 4 3										
2 3										
2										
1										
2										
2 7										
1 7										
6										
1 4										
4										

Qn 5:

			2							
		2	3	4			2	2		
	2	5	1	4	4	2	1	1	7	7
7										
9										
3 2										
2 2										
2										
3 2										
4 4										
3 2										
1 1										
3										

Qn 6:

	3	2	1,5	2, 2, 1	4	2, 2, 1	1,5	2	3
1,1									
1,1									
4									
2,1,2									
9									
1,5,1									
1,1,1,1									
1,1									